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Patterns of population genetic variation have
frequently been understood as consequences of
life history covariates such as dispersal ability
and breeding systems (e.g. selfing). For
example, marine invertebrates show enormous
variation in life history traits that are correlated
with the extent of gene flow between populations
and the magnitude of differentiation among
populations at neutral genetic markers (FST).
Here we document an unexpected correlation
between marine invertebrate life histories and
deviation from Hardy–Weinberg equilibrium
(non-zero values of FIS, the inbreeding coeffi-
cient). FIS values were significantly higher in
studies of species with free-spawned planktonic
sperm than in studies of species that copulate or
have some form of direct sperm transfer to
females or benthic egg masses. This result was
robust to several different analytical approaches.
We note several mechanisms that might contrib-
ute to this pattern, and appeal for more studies
and ideas that might help to explain our
observations.
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1. INTRODUCTION
Large positive FIS values from marine invertebrate
population genetics studies are commonly observed
but less easily explained in relation to life history
variation compared to among-population differen-
tiation (high FST; e.g. Bohonak 1999). FIS values
reflect deviation from Hardy–Weinberg equilibrium
(HWE) genotype frequencies and (indirectly) reflect
relative population heterozygosity. High positive FIS

values (and heterozygosities significantly less than
those predicted at HWE) may be caused by labora-
tory artefacts, unobserved null alleles, natural selec-
tion acting on the genetic markers, mating among
relatives, or unrecognized spatial or temporal struc-
ture within samples known as the Wahlund effect
(Zouros & Foltz 1984; David et al. 1997; Raymond
et al. 1997; Whitaker 2003). Here we report the
results of a literature survey that reveals a taxonomi-
cally broad association between one life history trait
(spawned planktonic sperm versus copulation) and
FIS variation.
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2. LITERATURE SURVEY AND ANALYSIS
We surveyed the literature (especially the journals
Marine Biology, Molecular Ecology and Evolution) for
studies that reported FIS values from broad geo-
graphic sampling of multiple nuclear loci with large
average sample sizes per population (see electronic
supplementary material). For each case (a species
within a study, NZ124) we used the mean estimate
of FIS for all populations averaged across all poly-
morphic loci. We scored each species for three
reproductive traits of primary interest: mode of larval
dispersal (with or without prolonged planktonic larval
dispersal), male spawning mode (planktonic sperm
versus copulation or other direct sperm transfer) and
female spawning mode (planktonic eggs versus
internal or external benthic eggs). We compared FIS

values for bivariate traits using two-sample t-tests. We
used the sequential Bonferroni correction for multiple
t-tests (Sokal & Rohlf 1997) to identify individual test
results (indicated by an asterisk) that were significant
at the study-wide aZ0.05.

We examined the phylogenetic correlation between
reproductive traits and FIS values using independent
contrasts. We used a phylogeny (figure 1) derived
from recent syntheses (Ruppert et al. 2004) and a few
molecular phylogenies (Romano & Cairns 2000; van
Oppen et al. 2001; Le Goff-Vitry et al. 2004). Where
we happened to survey two or more studies of a single
species, we included all FIS estimates. We resolved
some parts of the tree by favouring monophyletic
species and genera, and we arbitrarily resolved poly-
tomies that did not include informative differences in
any of the reproductive traits. We assumed all branch
lengths to be equal. We used the Brunch method in
CAIC (Purvis & Rambaut 1995) to estimate corre-
lations between standardized contrasts in reproduc-
tive traits and standardized contrasts in FIS values
transformed as exp(FIS).

In other analyses (not shown here) we also scored
each species for two aspects of the breeding system:
asexuality (with or without a significant asexual stage)
and hermaphroditism (with or without a prominent
simultaneous hermaphrodite adult stage). Neither of
these traits was significantly associated with FIS

variation in t-tests, but our survey was a weak test of
these effects because the realized extent of either
asexual propagation or selfing is poorly known for
most of the species that we surveyed.
3. RESULTS
Most studies reported positive FIS values (mean
FISZ0.172). Among the 23 highest FIS values (more
than 0.3), 22 came from anthozoans (nZ14), bivalves
(nZ4), gastropods (nZ2), polychaetes (nZ1) and
tunicates (nZ1) with free-spawning males. Mean
(variance) FIS was 0.205 (0.054) for 89 studies of
species with planktonic sperm (figure 2a). In contrast,
mean FIS was 0.081 (0.007) among 35 studies of sea
stars, gastropods, cephalopods and crustaceans with
direct sperm transfer or copulation (*pZ0.000 09).
We found a comparable difference when we analysed
only allozyme results (*pZ0.0003, but not for the
much smaller number of nDNA marker studies,
NZ17, pZ0.091), without the four highest FIS
q 2005 The Royal Society
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Figure 2. Marine invertebrate FIS values. (a) Studies of species with planktonic sperm (left) versus species with copulation or
other direct sperm transfer to eggs (right). Some species with planktonic sperm fertilize internal eggs or benthic egg masses
(spermcasting, triangles). (b) Dispersing planktonic larvae (left) versus benthic development without larval dispersal (right).
(c) Planktonic eggs (left) versus benthic fertilization of internal eggs or external egg masses (right).
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Figure 1. Phylogeny used in the independent contrasts analysis. Higher taxon names are shown above the branching pattern
(species names are omitted for clarity). Black branches and boxes indicate lineages or species with planktonic sperm; broken
branches and white boxes indicate copulation or direct sperm transfer in (left to right) an asterinid sea star, Leptasterias sea stars,
crustaceans, caenogastropods (whelks, periwinkles, slippershells), opisthobranch gastropods (nudibranchs, sea slugs) and
cephalopods (squids, octopuses). Open circles mark nodes in which copulating descendants had lower FIS than the sister group
with planktonic sperm; the black circle marks one contrast (asterinids) in which the copulator had a higher FIS value.
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valuesO0.8 (from Epiactis sea anemones and a cup

coral; *pZ0.0008), without all sea anemones (in

which cloning and selfing are suspected to cause

deviations from HWE; *pZ0.003), or without all

bivalves (in which selection on allozyme variation

is suspected to cause deviations from HWE;

*pZ0.0002). We found a comparable difference when

we eliminated multiple studies for single species and

used only the lowest (*pZ0.0002) or the highest

(*pZ0.0001) observed value for each species.

Many of the highest FIS values (meanZ0.353)

were found among 17 studies of spermcasting corals,

sea anemones, sponges and tunicates with planktonic

sperm and internal fertilization (triangles in figure 2a;
Biol. Lett. (2005)
Pemberton et al. 2003). FIS values for spermcasters

were significantly greater than for copulators

(*pZ0.002) but not significantly greater than in

species with planktonic fertilization after correction

for multiple tests (pZ0.022).

The phylogenetic analysis identified five indepen-

dent contrasts between lineages with and without free

spawning of sperm (figure 1). In four cases, the

evolution of copulation or other direct sperm transfer

(in Leptasterias sea stars; snails; other molluscs; and

crustaceans) resulted in lower FIS values (rZ0.787).

This result was marginally not significant (pZ0.063),

but an important assumption of the Brunch

regression method was violated: after standardization

http://rsbl.royalsocietypublishing.org/
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there was still a significant association between
contrasts in FIS values and their standard deviations
(pZ0.047; see Purvis & Rambaut 1995). The source
of this violation was the fifth contrast (between two
species of asterinid sea stars) in which the lineage
with direct sperm transfer had a higher FIS value than
its free-spawning sister group. When we dropped
asterinid species from the Brunch analysis, the four
remaining contrasts in FIS values were no longer
significantly correlated with their standard deviations
and the correlation between copulation and lower FIS

values was highly significant (rZ0.972, pZ0.006).
The patterns above were not confounded by

variation in other reproductive traits. Mean FIS was
0.149 (0.030) among 89 studies of species with
planktonic larval dispersal versus 0.235 (0.076)
among 34 studies of animals with non-dispersing
larval development (pZ0.096; figure 2b). This differ-
ence is in the expected direction if some high FIS

values reflect mating among relatives in species with-
out planktonic larval dispersal. Mean FIS was 0.166
(0.035) among 70 studies of females with planktonic
eggs and 0.184 (0.056) among 52 studies of internally
fertilized females (pZ0.644; figure 2c). The phyloge-
netic analyses identified a larger number of contrasts
for these two traits (NZ14–17), but both were weakly
correlated with contrasts in FIS values (r!0.4) and
the associations were not significant (pO0.1).
4. DISCUSSION
The evolution of copulation (the derived character
state; Parker et al. 1972; Nielsen 1998) is significantly
correlated with the evolution of lower FIS values in
both our survey and phylogenetic analyses. This
surprising pattern does not imply that marine invert-
ebrates with planktonic sperm are typically inbred
(via matings among relatives). Rather, it suggests that
some aspect of the evolutionary genetics, demogra-
phy, or mating system of these animals that is
associated with the production of planktonic sperm
for fertilization also tends to cause greater departures
from HWE in the form of heterozygote deficits.

Additional planned comparisons (e.g. Cohen
1996) might help to reveal the underlying mechan-
isms that cause this pattern. Our survey does not
point to a single general explanation that would
plausibly connect planktonic sperm with greater
departures from HWE, and we do not know what
mechanism(s) caused this pattern. We suggest below
three possibilities that could combine to influence
deviations from HWE and that seem worthy of
further exploration, but we hope that readers will
critically evaluate these suggestions and propose
better alternatives.

One likely mechanism is extensive within-population
genetic structure (the Wahlund effect) caused by
unrecognized spatial or temporal variation (David
et al. 1997; Whitaker 2003) that results in large
deviations from HWE. However, we are uncertain
why the strength of this effect should be correlated
with male spawning mode but not dispersal mode
(which seems more likely to influence the magnitude
of within-population genetic structure).
Biol. Lett. (2005)
A second mechanism is based on higher rates of
molecular evolution associated with some life history
traits (e.g. Foltz 2003). Higher mutation rates in free-
spawners may be caused by larger numbers of cell
cycles leading to high sperm production (Beckenbach
1994). Under this mechanism, higher FIS values in
species with planktonic sperm would be consistent
with more frequent null alleles that cause greater
departures from HWE in comparison to copulating
species with lower allocation to sperm production
(Launey & Hedgecock 2001). Null alleles may be
common at allozyme (Foltz 1986) and microsatellite
(Launey & Hedgecock 2001) loci in free-spawning
mollusks and echinoderms (McCartney et al. 2004),
in comparison to copulating decapod crustaceans in
which nulls may be rare ( Jensen & Bentzen 2004).

A third mechanism is based on high variance in
reproductive success (Purser 1966), which can cause
deviations from HWE due to randomly induced
differences in allele frequencies between sperm and
eggs (Pudovkin et al. 1996; Luikart & Cornuet 1999).
Under this mechanism, among-male variance in
fertilization success (which promotes heterozygote
excess relative to HWE) might combine with other
factors (such as selection and null alleles that promote
heterozygote deficits; David et al. 1997) to produce
smaller overall departures from HWE in copulators
(in which variance in reproductive success might be
higher) compared to large departures from HWE in
species with planktonic sperm (in which this variance
might be lower). In terrestrial vertebrates and arthro-
pods, copulation is associated with high among-male
variance in paternity (Birkhead & Møller 1998) and
intense sexual selection (Simmons 2001). In a free-
spawning sea urchin, this among-male variance was
surprisingly low (Levitan 2004), perhaps due to
mixing of sperm in the water and the inability of
males to limit access to eggs by the sperm of other
individuals. However, the models predict heterozy-
gote excess and high negative (rather than less
positive) FIS values, and the strength of this effect is
expected to be of the order of 1/2Ne (that is, very
weak in most marine invertebrates with very large
Ne). This mechanism also does not predict the
strikingly high FIS values among spermcasters that
share some life history features in common with free-
spawners and with copulators (Bishop 1998).
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